Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices

نویسنده

  • SEAN O’ROURKE
چکیده

Abstract. We study the fluctuations of eigenvalues from a class of Wigner random matrices that generalize the Gaussian orthogonal ensemble. We begin by considering an n × n matrix from the Gaussian orthogonal ensemble (GOE) or Gaussian symplectic ensemble (GSE) and let xk denote eigenvalue number k. Under the condition that both k and n − k tend to infinity as n → ∞, we show that xk is normally distributed in the limit. We also consider the joint limit distribution of eigenvalues (xk1 , . . . , xkm) from the GOE or GSE where k1, n − km and ki+1 − ki, 1 ≤ i ≤ m − 1, tend to infinity with n. The result in each case is an m-dimensional normal distribution. Using a recent universality result by Tao and Vu, we extend our results to a class of Wigner real symmetric matrices with non-Gaussian entries that have an exponentially decaying distribution and whose first four moments match the Gaussian moments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices

Consider a deterministic self-adjoint matrix Xn with spectral measure converging to a compactly supported probability measure, the largest and smallest eigenvalues converging to the edges of the limiting measure. We perturb this matrix by adding a random finite rank matrix with delocalized eigenvectors and study the extreme eigenvalues of the deformed model. We give necessary conditions on the ...

متن کامل

CLT for spectra of submatrices of Wigner random matrices

Citation Borodin, Alexei. "CLT for spectra of submatrices of Wigner random matrices. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. We prove a CLT for spectra of submatrices of real symmetric and Her-mitian Wigner matrices. We show that if in the standard normalization the fourth moment of the off-digonal entries ...

متن کامل

Eigenvalue variance bounds for Wigner and covariance random matrices

This work is concerned with finite range bounds on the variance of individual eigenvalues of Wigner random matrices, in the bulk and at the edge of the spectrum, as well as for some intermediate eigenvalues. Relying on the GUE example, which needs to be investigated first, the main bounds are extended to families of Hermitian Wigner matrices by means of the Tao and Vu Four Moment Theorem and re...

متن کامل

Statistical Mechanics and Random Matrices

Statistical Mechanics and Random Matrices 3 1. Introduction 6 2. Motivations 7 3. The different scales; typical results 12 Lecture 1. Wigner matrices and moments estimates 15 1. Wigner's theorem 16 2. Words in several independent Wigner matrices 23 3. Estimates on the largest eigenvalue of Wigner matrices 25 Lecture 2. Gaussian Wigner matrices and Fredholm determinants 27 1. Joint law of the ei...

متن کامل

SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices

Recently Pluhar and Weidenmüller [Ann. Phys. (N.Y.) 297, 344 (2002)] showed that the eigenvectors of the matrix of second moments of embedded Gaussian unitary ensemble of random matrices generated by k-body interactions (EGUE(k)) for m fermions in N single particle states are SU(N) Wigner coefficients and derived also an expression for the eigenvalues. Going beyond this work, we will show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009